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Abstract--In previous works we have introduced the basic features of a method for the numerical simulation 
of heat and mass transfer processes during casting formation. Within this approach we describe here the 
evolution of pressure and the formation of porosity defects in hot spots by the simultaneous treatment of 
thermoelastic, crystallization and porosity growth problems in axially symmetric castings. Copyright © 

1996 Elsevier Science Ltd. 

1. INTRODUCTION 

The porosity may result from shrinkage, dissolved 
gases, or a combination of both, and may take the 
form of either macroscopic pores in localized area 
or microporosity, evenly distributed throughout large 
areas in the casting. The interdendritic porosity 
(microporosity) arises because the solubility of hydro- 
gen is less in the solid than in the liquid metal, so that 
some of the hydrogen is expelled into the inter- 
dendritic liquid. Thus, the concentration of the dis- 
solved hydrogen, and therefore its partial pressure 
rises with the progress of solidification. If the con- 
centration of hydrogen in the interdendritic liquid 
rises to a value sufficient to exceed the sum of the local 
pressure in the interdendritic liquid and the excessive 
pressure attributed to surface tension, then micro- 
porosity appears. The shrinkage porosity is caused 
by the inefficiency of the feeding mechanism, which 
supplies molten metal to the solidification front. The 
resistance to filtration flow causes a pressure drop 
across the dendritic network. The formation of shrink- 
age porosity and gas holes at separate locations is 
rare, and usually both processes--pressure drop due 
to filtration, and partial pressure increase of the dis- 
solved gas--occur simultaneously at the same place. 

There are reports of computer simulations of 
porosity formation, accounting for the shrinkage and 
dissolved gas evolution, in castings with a permanent 
feeding of the two-phase region with molten metal [1- 
4]. A different pattern of porosity formation is realized 
when the molten metal is enclosed in a solid shell 
and the feeding is ceased (hot spot). In this case, the 
porosity defects result from the shrinkage in the two- 
phase region, the content of dissolved gases in the hot 
spot, and the thermal contraction due to the progress 
of crystallization in the outer layers. In ref. [5] we 
obtained the deformations, stresses and strains in the 
casting-mould system within a linear thermoelastic 
model, and described the evolution of the air gap 
and its influence on the process of crystallization. We 

demonstrated a solution for the same configuration 
without a feed up of the two-phase region, i.e. when 
the molten metal remains enclosed in the solid shell. 
Then the pressure in the hot spot changes during the 
process--in the case considered in ref. [5] it rises 
initially, because the outer layers are shrinking (p is 
considered to be constant during the phase transition) 
and afterwards, when the crystallization takes place 
in the considered volume the pressure falls to zero. It 
becomes feasible, in this context, to describe the local 
phenonemena which influence the metal micro- 
structure during crystallization. 

The research reported here extends this model to 
include the effects of volume contraction in the two- 
phase region. The change of the density p during the 
phase transition is compensated for by the growth of 
porosity. The pressure in the molten metal provides 
the boundary conditions, which are needed to treat 
the formation of porosity defects, and in its turn is 
determined from the balance between the volume con- 
traction due to the crystallization in the outer layers 
and the shrinkage in the mushy zone, compensated 
for by interdendritic flow. The aim of the present 
research is to describe the creation of porosity defects 
in hot spots by simultaneous treatment of thermo- 
elastic, crystallization, shrinkage and gas evolution in 
the two-phase region in axially symmetric castings. 

2. MATHEMATICAL MODELING 

2.1. Heat balance equation 
In previous papers by the same authors [6, 5] we 

proposed a new model for simultaneous treatment of 
hydrodynamic cooling and crystallization problems 
in castings with complex shapes. Within this 
approach, an irregular shaped physical domain is 
mapped into a computational domain with a regular 
geometry, where well developed finite difference tech- 
niques can be applied. The equations of heat and 
mass transfer are written and numerically solved in a 
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NOMENCLATURE 

c heat capacity coefficient t" 
d primary dendrite arm spacing T 
F density of the external volume Tm 
fL,./s,./r" volume fractions of liquid, solid and TL 

pore phases u 
[H0] initial hydrogen content in the liquid W 

metal 
[HL], [Hs] hydrogen concentration in liquid 

and solid 
k segregation coefficient 
k0 permeability in the mushy region 
KLm KSH equilibrium constants for 

hydrogen in liquid and solid metal 
L latent heat of crystallization 
P interdendritic liquid pressure 
Pg gas pressure 
PM liquid pressure in the molten metal 
q heat flux vector 
t time 

stress tensor 
temperature 
melting point of pure metal 
liquidus temperature 
velocity 
density of the internal energy. 

Greek symbols 
~H constant in equation (8) 

fi 
r l ,  
O il 

K 

2, p 
V 

P 
Ps, P~ 
6 

27 300/(j[.pL +./sPs) 
thermal expansion coefficient 
affine connection coefficients 
velocity of deformation tensor 
heat conductivity coefficient 
Lame's coefficients 
viscosity of liquid 
specific density 
densities of solid and liquid 
liquid-gas surface tension. 

coordinate space R, obtained through a metric map- 
ping from the space of the real process. The mapping 
is constructed in such a way, that a boundary fitted 
coordinate system is obtained. The coordinate system 
is generated by algebraic methods, which makes more 
feasible the problem of its updating in cases with non- 
stationary metric. The equations of heat and mass 
transfer in the boundary fitted coordinate system with 
metric tensor Gab should be derived in a covariant 
way in order to account for the effects of boundary 
curvature and nonstationarity. We obtain them from 
the laws of conservation of mass, momentum and 
energy, defined in the coordinate space R. The cor- 
responding equations are : 

(a) mass 

( l /x/G)~,(x/ /Gp)+V'(pu) = 0 (1) 

(b) momentum 

p(ult + ukVkff + 2F',kuk)-- Vkt j~ = pF' (2) 

(c) energy 

p( W~ + W c~t In G+u'14~) = ti/O~'- Viq' + puk F~. 

~3) 

The heat problem is solved in two regions, with 
solid and molten metal, where the equation is 

p(c+ L ~TJS) ¢?t T = VK" VT. (4) 

The boundary conditions of | and llI kind follow 
from c~,T = N.VT, where the vector N is normal to 
the boundary surface. The crystallization is described 
by the method of equivalent heat capacity 
CE = C--L OTfS, where the relationship between solid 

fractionjs and temperature T is obtained by the Sheil 
expression 

2.2. Formation of porosity 
It is assumed that a gas pore is stable provided that 

the excess pressure in the gas is sufficient to overcome 
the surface tension, while the gas phase has a radius 
that is small enough to fit in the interdendritic space. 
Since the primary dendrite spacing is at least an order 
of magnitude higher than the secondary dendrite arm 
spacing, the surface tension barrier to be overcome 
for the formation of gas pore within the secondary 
spacing would be much higher. The above require- 
ments are expressed as 

4ff 
P g - P  = ~ .  (5) 

While porosity has not formed the local pressure in the 
two-phase region P is calculated from the continuity 
equation 

ps ~ ~fP 
- l - v .  ( f L U )  + ~ = O, (6) 

through the equation describing interdendritic flow 
(Darcy's law) 

u = k~v" P. (7) 

Equation (6) indicates that the shrinkage during the 
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solidification (first term) is compensated by inter- 
dendritic flow (second term) and the growth of 
porosity (the last term). The permeability k0 in the 
Darcy's law can be expressed by the Blake-Kozeney 
equation [3] as 

f3Ld2 
k o -  

180(1 --fL) 2 

The primary dendrite arm spacing d is inversely 
proportional to the local temperature gradient GL and 
the solidification growth velocity Us and can be expre- 
ssed as [7] 

d = aGLbUs c 

where a, b, c are constants. 
Ps is calculated from equation (5). A new amount 

of porosity is obtained from the conservation equation 
for gas content 

PgfP 
[Ho] =(1- - f L ) [ Hs ] + f L[ HL] +a H~- -  (8) 

The left side is the initial hydrogen content. The 
first, second and third terms on the right are the 
amounts of hydrogen in the solid, liquid and porosity, 
respectively. It is sufficient to consider only the hydro- 
gen as a contributor to microporosity in aluminum 
alloys because it is the only gas with a measurable 
solubility in aluminum. The hydrogen contents in the 
solid and liquid are expressed by the Sievert's law as 

[Hs] - r,- o,/2 - -  ~xSH ~ g  

[HE] = KLHP 1/2 

The procedure described above is repeated over each 
volume element in the two-phase region and at each 
time step, until the required time is reached. The equa- 
tions (6) and (7) are solved jointly with the problem 
for cooling and crystallization (4) with initial and 
boundary conditions settled above. The interaction 
between the heat and pore formation problems takes 
place through the mushy zone which is updated at 
each time step. Equations (6) and (7) are solved by a 
finite difference method in a local orthogonal coor- 
dinate system fitted to the boundaries of the two- 
phase region. The coordinate surfaces are the iso- 
therms T(q) = const and the integral lines x(~) of the 
temperature gradient, which are obtained from the 
system of ordinary differential equations 

dx ~ 
- - =  VgT(x(~)). (9) 
d~ 

The system (9) provides the transition functions 
between the coordinates {x ~} in the coordinate space 
R and the local coordinates {r/, (} in the two-phase 
region. Since the geometry of the mushy zone is non- 
stationary, the local coordinate system is updated at 
each time step. 

The boundary conditions in the mushy region are 

set as follows. At the centerline and at the mould wall 
of an axi-symmetric casting, i.e. where r = 0 and r = ra 
(r~ is the casting radius) 

~P 
U r = 0 ;  "~-r = 0 

where ur = r-component of the velocity. Along the 
liquidus isotherm, the pressure is equal to the pressure 
in the molten metal PM, which is obtained after sim- 
ultaneous treatment of porosity formation and ther- 
moelastic problems in the case of hot spot. When the 
molten metal is not enclosed within a solid shell, we 
assume that the pressure is atmospheric. At the 
liquidus isotherm liquid metal flows to feed the shrink- 
age 

where UL is the liquidus isotherm velocity. 

2.3. The thermoelastic model 
The equations for stresses and deformations are 

derived from the corresponding laws of conservation 
in the Riemannian space R. We use a linear model 
defined by the stress tensor 

t ~k = A(T)G~k3T+B(T)(V • ~)G ~ 

+ C(T) (Vy  k +vk~i). (10) 

The coefficients A, B and C are obtained on the 
assumption of adiabatic initial conditions 

A = A f l / ( I + Z A ) ;  B = 2 - Z A 2 / ( I + Z A ) ;  C = #  

where Z = Tofl2/c ; A = 2 + 2/3/~. 
With the use of the expression GiJFkt+G~kF'j~ = 
G tk the stress tensor is written down in partial - -  , I ,  

derivatives 

t ~k = AG~kbT+ BG'*(~I, + (lnx//G)j~ ') 

+ CeG u~* + G k°:i G *k*t~ (11) 

In the case when the inertia and convective terms 
can be neglected, equation (2) is presented in the form 

pFg+2pF~k~ = Vkt ~k = AGk~VkrT 

+(B+C)Gk'VkVi~'  + C A ~  +CR~¢ k (12) 

where R~k is the curvature tensor of a coordinate sur- 
face S [5]. 

The boundary conditions for equation (12) vary 
during the process. The components of the normal 
stress on a surface S will be 

e~ = t~N j = (A6 T+  B(¢~, + (lnx//G),,¢'))N ' 

+C(Gi 'Gk.~+¢I ,  +GI~Gjk~t)N k. (13) 

Initially the normal stress on the walls of the form 
P = UN~ equals the initial pressure. After a crust is 
formed, it diminishes because of the shrinkage. While 
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P > 0, the boundary conditions are ~ = 0. When P 
becomes zero, the boundary conditions are deter- 
mined from the expression P = 0. The air gap, which 
appears, is determined as the sum of the boundary 
displacements of  the casting and mould 

c5(t) = ~(t)- N c  + ~(t)" Nl.,,. 

In this case the heat transfer between the mould 
and the casting will change significantly. 

2.4. Pressure evolution in the hot spot 
The system of equations (4) and (12), written in the 

coordinate space R, is solved jointly with the problem 
for pore formation (6) (8) with the initial and bound- 
ary conditions settled above. The interactions between 
the pore formation and the mechanical problems take 
place through the boundary conditions : the pressure 
PM in the molten metal provides a boundary condition 
for the continuity equation (6). In ref. [5] we dem- 
onstrated a solution for the isotropic part of  stress 
tensor in the case when the molten metal remains 
enclosed after the formation of  solid core. 

~Trt = B(T)(V" ~) (14) 

without taking into account the shrinkage of  the two 
phase region and pore formation. The pressure change 
APM for a moment At can be obtained from equation 
(14) in the form 

A VEI 
APM = B( T ) ~ - ,  

where V is the volume enclosed by the solid crust and 
5 VEc, is the volume contraction which occurs because 
of  the shrinkage of  the outer layers. 

F rom the mass balance equation (6) the shrinkage 
during the solidification in V can be obtained 

AI/s = f (P~  • 
. J , ~ \ P ,  l)-~fuv 

compensated by interdendritic flow and the growth of  
porosity 

A V,, = f U P .  ~-ut. 

A Vs--AVp is the volume contraction in the area 
enclosed within the solid core, which has to com- 
pensate for the contraction AVEL resulting from the 
shrinkage of  the outer layers. In the case when 
A VEt. < A Vs, the pressure in the molten metal is cal- 
culated from the volume balance equation 

AVs--AVH~ = AVp (15) 

by an iterative procedure. When A VEC > A Vs the pres- 
sure PM is obtained as 

PM = PII + AP 

where P0 is the pressure for which porosity growth is 
zero and 

A VEL -- A Vs 
AP  = B(T)  V 

(we do not take into consideration such problems as 
plastic deformations, stress relaxation and distortions 
of  the dendritic network). 

3. RESULTS AND DISCUSSION 

The system of  differential equations (4), (6) (8) and 
(12) in the case of  the hot spot was solved numerically 
for an axi-symmetric casting-mould system. Cal- 
culations were carried out for an alloy with parameters 
listed in Table 1. In Fig. I we present the distribution 
of  the amount  of  porosity. The calculated radius of  
the porosity is shown in Fig. 3. The evolution of  the 
pressure in the molten metal is presented in Fig. 4. 
The pressure remains atmospheric up to the enclosing 
of  the molten metal within the solid crust. As the solid 
crust is formed, the pressure drops sharply and the 
porosity growth increases accordingly in order to 
compensate for the shrinkage solidification [Fig. 1 (a)]. 
With the progress of  crystallization the pressure in the 
molten metal consequently rises, because the outer 
layers are shrinking and the amount  of  porosity 
decreases following equation (15) [Fig. l(b)]. When 
molten metal in enclosed within the solid shell, the 
feeding is ceased and the mass deficit is calculated 
from the mass balance for the volume element equa- 
tion (6) [Fig. 1 (c)]. In this case even very small stresses 
will cause separation of  the interdenritic liquid films. 
The separation of  these liquid films causes the appear- 
ance of  hot  cracking. In Fig. 2 we demonstrate another 
solution for the same configuration, this time without 
taking into account the thermomechanical effects and 
assuming that the pressure in the molten metal is 
atmospheric during the process. The calculated 
change of  amount  and distribution of  porosity indi- 
cates that the thermomechanical effects can not be 

Table 1. Parameter values 

c 1088 J.kg I.grad i 
[Ho] 0.2 cc/100 g 
k 0.173 
KcH 0.6 cc/100 g.atm "2 
KSH 0.06 CC/100 g.atm ~-" 
L 4 × 105 J.kg i 
7]~, 660C 
TE 645C 
[] flo+fl~T;flo=O.7xlO 4;fl ,= 10 Sgrad ' 
~- 200W.m ~.grad J 
2 0.49× 10 H N.m 2 
t t #o+,utT+Iz2T2; Po = 0.25 × 10 H N.m 2; 

p~ =0.246×103N.m ~-.grad ~;p2=0.25x105 
N.m 2.grad 2 

Ps 2520 kg.m 
Pt 2380 kg.m s 
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(c) 

Fig. 1 continued. 

Fig. 2. The figure shows the pore distribution in a casting at the end of crystallization, when the pressure 
inside the melt is sustained at the permanent  level of  1 atm. 
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Fig. 3. The pore sizes, when crystallization follows the 'hot spot' pattern, described in Fig. 1. 
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Fig. 4. Shows the pressure evolution with time inside the melt in the case of 'hot spot' type crystallization. 

neglected and  the p rob lem for porosi ty fo rmat ion  in 
a ho t  spot  can be solved only by s imul taneous  treat- 
men t  of  thermoeleast ic ,  crystal l izat ion and  porosi ty  
growth  problems.  
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